Morphine Reward Promotes Cue-Sensitive Learning: Implication of Dorsal Striatal CREB Activity
نویسندگان
چکیده
Different parallel neural circuits interact and may even compete to process and store information: whereas stimulus-response (S-R) learning critically depends on the dorsal striatum (DS), spatial memory relies on the hippocampus (HPC). Strikingly, despite its potential importance for our understanding of addictive behaviors, the impact of drug rewards on memory systems dynamics has not been extensively studied. Here, we assessed long-term effects of drug- vs food reinforcement on the subsequent use of S-R vs spatial learning strategies and their neural substrates. Mice were trained in a Y-maze cue-guided task, during which either food or morphine injections into the ventral tegmental area (VTA) were used as rewards. Although drug- and food-reinforced mice learned the Y-maze task equally well, drug-reinforced mice exhibited a preferential use of an S-R learning strategy when tested in a water-maze competition task designed to dissociate cue-based and spatial learning. This cognitive bias was associated with a persistent increase in the phosphorylated form of cAMP response element-binding protein phosphorylation (pCREB) within the DS, and a decrease of pCREB expression in the HPC. Pharmacological inhibition of striatal PKA pathway in drug-rewarded mice limited the morphine-induced increase in levels of pCREB in DS and restored a balanced use of spatial vs cue-based learning. Our findings suggest that drug (opiate) reward biases the engagement of separate memory systems toward a predominant use of the cue-dependent system via an increase in learning-related striatal pCREB activity. Persistent functional imbalance between striatal and hippocampal activity could contribute to the persistence of addictive behaviors, or counteract the efficiency of pharmacological or psychotherapeutic treatments.
منابع مشابه
Disrupting effect of drug-induced reward on spatial but not cue-guided learning: implication of the striatal protein kinase A/cAMP response element-binding protein pathway.
The multiple memory systems hypothesis posits that different neural circuits function in parallel and may compete for information processing and storage. For example, instrumental conditioning would depend on the striatum, whereas spatial memory may be mediated by a circuit centered on the hippocampus. However, the nature of the task itself is not sufficient to select durably one system over th...
متن کاملInhibition of CREB Activity in the Dorsal Portion of the Striatum Potentiates Behavioral Responses to Drugs of Abuse
The striatum participates in multiple forms of behavioral adaptation, including habit formation, other forms of procedural memory, and short- and long-term responses to drugs of abuse. The cyclic-AMP response element binding protein (CREB) family of transcription factors has been implicated in various forms of behavioral plasticity, but its role in the dorsal portion of the striatum-has been li...
متن کاملDistinct Changes in CREB Phosphorylation in Frontal Cortex and Striatum During Contingent and Non-Contingent Performance of a Visual Attention Task
The cyclic-adenosine monophosphate response element-binding protein (CREB) family of transcription factors has been implicated in numerous forms of behavioral plasticity. We investigated CREB phosphorylation along some nodes of corticostriatal circuitry such as frontal cortex (FC) and dorsal (caudate-putamen, CPu) and ventral (nucleus accumbens, NAC) striatum in response to the contingent or no...
متن کاملInhibition of cAMP Responsive Element Binding Protein in Striatal Neurons Enhances Approach and Avoidance Responses toward Morphine- and Morphine Withdrawal-related Cues
To investigate the role of cAMP responsive element binding protein (CREB)-dependent gene expression in morphine induced behaviors, we examined bitransgenic mice expressing a dominant and strong inhibitor of the CREB family of transcription factors, A-CREB, in striatal neurons in a regulatable manner. The expression of A-CREB in the striatum enhanced both morphine-induced conditioned place prefe...
متن کاملCannabidiol inhibits the reward-facilitating effect of morphine: involvement of 5-HT1A receptors in the dorsal raphe nucleus.
Cannabidiol is a non-psychotomimetic constituent of Cannabis sativa, which induces central effects in rodents. It has been shown that cannabidiol attenuates cue-induced reinstatement of heroin seeking. However, to the best of our knowledge, its effects on brain stimulation reward and the reward-facilitating effects of drugs of abuse have not yet been examined. Therefore, we investigated the eff...
متن کامل